Computing the Solution Path for the Regularized Support Vector Regression
نویسندگان
چکیده
In this paper we derive an algorithm that computes the entire solution path of the support vector regression, with essentially the same computational cost as fitting one SVR model. We also propose an unbiased estimate for the degrees of freedom of the SVR model, which allows convenient selection of the regularization parameter.
منابع مشابه
Robust and Efficient Kernel Hyperparameter Paths with Guarantees
Algorithmically, many machine learning tasks boil down to solving parameterized optimization problems. The choice of the parameter values in these problems can have a significant influence on the statistical performance of the corresponding methods. Thus, algorithmic support for choosing good parameter values has received quite some attention recently, especially algorithms for computing the wh...
متن کاملApplication of Support Vector Machine Regression for Predicting Critical Responses of Flexible Pavements
This paper aims to assess the application of Support Vector Machine (SVM) regression in order to analysis flexible pavements. To this end, 10000 Four-layer flexible pavement sections consisted of asphalt concrete layer, granular base layer, granular subbase layer, and subgrade soil were analyzed under the effect of standard axle loading using multi-layered elastic theory and pavement critical r...
متن کاملPositive solution of non-square fully Fuzzy linear system of equation in general form using least square method
In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملRegularized least squares support vector regression for the simultaneous learning of a function and its derivatives
In this paper, we propose a regularized least squares approach based support vector machine for simultaneously approximating a function and its derivatives. The proposed algorithm is simple and fast as no quadratic programming solver needs to be employed. Effectively, only the solution of a structured system of linear equations is needed. 2008 Published by Elsevier Inc.
متن کامل